Paul Julienne
 on March 18, 2014

Word and Fire: The Amazing Story of Carbon, Part 2: Word

In the view of contemporary biology, we are, in a sense more literal than figurative, embodied words. If we have the eyes to see, is it too much a stretch of the poetic imagination to think of each one of us, as it were, as being a unique utterance of God, a “word” spoken with an invitation to respond?


Part 1 of this article told us how a special quantum state in the compound state of three alpha particles plays a critical role in the production of carbon and the rest of the heavier chemical elements in the hot interior of a dying star. Carbon made this way became part of the gas cloud that eventually condensed into our sun and its planetary system, and became part of our earth where we live. Let us now skip to today and reflect a bit on science and life—life as we know it as ordinary human beings and life as made possible by the unique chemistry of carbon. Among other things, this chemistry makes possible the molecules of life, including the remarkable DNA molecule that is the basis of molecular genetics and the human genome.

I had the pleasure of knowing Francis Collins even before he founded BioLogos. We both shared the concern that too many people in our churches, in the general public, and in the sciences were being influenced by the widespread misconception that science and Christian faith must be in conflict with one another. The reality of the situation is much more interesting and subtle than can be captured by such a generalization. We also shared the concern that young people going into the sciences need not have to face a dilemma of choosing between science and their faith, as if one excluded the other. I count among my friends a number of scientists who, like Francis and myself, see no conflict between their science and their belief in God.

The word “science” comes from the Latin scientia, knowledge. Scientists seek understanding of the world. What it is really like? How does it work? Nobel laureate physicist Richard Feynman said that a really important aspect of science “is its contents, the things that have been found out. This is the yield. This is the gold. This is the excitement, the pay you get for all the disciplined thinking and hard work.” Most scientists I know will share Feynman’s passionate enthusiasm about understanding the world.

Scientific knowledge is derived from the scientific method of observing the world as it is. Science has been enormously fruitful and successful. Knowledge about the way the world works has enabled the marvels of modern communication, transportation, and medicine. Yet science is concerned with the world on scales of time and distance that extend well beyond those encountered in everyday human life. Much of what science discovers about the world is very counterintuitive—it surprises us. This is certainly true of the quantum theory, which is one of the most successful theories of contemporary science in its highly quantitative characterization of the atomic and subatomic world. Yet, the quantum world has dramatically different properties than our everyday world, so much so that Richard Feynman said about it: “Nobody knows how it can be like that.” Even now, over 50 years after the discovery of the theory, in spite of agreement on its mathematical formulation and the accuracy and power of its predictions, physicists do not yet agree on how the theory should be interpreted.

That the universe is intelligible is an utterly remarkable fact. It is understandable to our human minds even if it still holds mysteries for us. Perhaps one of the most profound things that Albert Einstein said is: “The most incomprehensible thing about the universe is that it is comprehensible.” Why is it that we human beings can actually understand the universe so well? Why are we so passionately driven to try to grasp the truth about it, and are satisfied when we do, however incompletely? Could it be that we are meant to be this way?

The eminent French physicist and philosopher Roland Omnes writes in Quantum Philosophy: Understanding and Interpreting Contemporary Science (1999) about how science, quantum physics in particular, is formal and abstract in its formulation, yet incredibly fruitful in its precise and quantitative characterization of Reality. Omnes asks:

How can science exist? Or: How is science possible? The obviousness of this question and the silence surrounding it echo Aristotle’s beautiful words: ‘Like night birds blinded by the glare of the sun, such is the behavior of the eyes of our mind when they stare at the most luminous facts.’ …The answer is perhaps as obvious as the question: science is possible because there is order in Reality. …The whole of science suggests such an answer, but science alone cannot establish or even formulate it, for this assertion is beyond science’s own representations.

There are some questions that science cannot answer. Even understanding why science is possible requires, as Omnes puts it, “leaving science and entering metaphysics.” When we do the latter, we must make critical judgments about the nature of the world based on considerations that lie beyond science per se. It takes wisdom to do that. Elsewhere in the book, Omnes does not hesitate to use an ancient philosophical term to characterize the order behind Reality, namely, its Logos, that is to say, its fundamental “logic,” “principle,” or ”ground.”

old books on a shelf

This subtle term Logos is also used in the familiar opening verse of the Gospel of John: “In the beginning was the Word [Logos], and the Word was with God, and the Word was God…. All things were made through him…” The term “Word” used here to translate the Greek λογος has a significance that is clearly more than literal, situating the Logos at the ground of all there is, at the root of all intelligibility and order in the totality of Reality. John’s verse is also an echo of the opening words of Genesis, where God creates by speaking. The wonderfully spare and austere language in the first chapter of Genesis also tells us that human beings are made in the image of God. John goes on to tell us something even more remarkable: “And the Word became flesh and dwelt among us.”

John identifies the Word-made-flesh with Jesus of Nazareth, the one who shows us—uncovers for us—the very character of God. Here is the heart, the logic, the Logos, of the whole gospel: the paradoxical story of Jesus and his self-giving, self-sacrificial love communicates to us the key to the essential nature of Reality, about the cosmos and humanity. It is the Logos-become-flesh who shows us how to bear the image of God rightly and flourish as human beings. I have yet to find anything from what I have learned from the natural sciences—physical, chemical, biological, or bio-medical—that necessarily conflicts with a robust Christian theology centered on the person Jesus of Nazareth understood as being fully God and fully human.

Words are an essential part of our humanity. Perhaps like science itself we take our words too lightly. How are words possible? Words are the basis for language by which we communicate to one another. Words tumble and cascade one after the other, yet they convey a whole. They make sense, at least if we speak the language. They communicate information. The scientific knowledge by which the universe is intelligible is communicated by words. Words can also communicate emotions, love and anger, and express poetry. They describe. They convey a tone, a mood. Words can be written or spoken. Yet words can be hopelessly inadequate to the task of conveying what we would like to express. Can we even put into words the aroma of a cup of coffee, if we wanted to express what it is like to another person who had never experienced it?

Now is a good time to re-enter the story of carbon. The incredibly rich life of a cell, and by extension an entire living organism, is based on the special chemistry made possible by the specific molecular bonding properties that a carbon atom has with another carbon atom or with different atoms like hydrogen, oxygen, nitrogen, and many others. There is a large subfield of the chemical sciences known as “organic chemistry” that studies the structure, properties, and reactions of such carbon-containing molecules. There is an enormous variety of such molecules, since carbon can bond with other carbon atoms to form long chains with branching substructures. Different kinds of molecules make proteins, fats, carbohydrates, hemoglobin, insulin, DNA, and all the other kinds of molecules involved in life. The field of “molecular biology” studies these molecules in their biological context.

Most molecules have a well-prescribed structure and shape, conforming to solution of the quantum mechanical equation that describes the ensemble of atoms that comprise the molecule. Molecules will normally have a definite structure that corresponds to the solution of the equation that has the lowest energy for the sequence of atoms in the molecule. Quantum chemists routinely do large-scale computer calculations of such structures on moderately sized molecules. The DNA molecule that bears the genetic information in the genome of an organism is quite different from most biomolecules. While the DNA has a definite double helix structure, the genetic code is carried by the sequence of “base pairs” of 4 possible base molecules, with any three pairs in the sequence coding for one of 20 possible amino acid molecules. These base pairs that make up the genome are strung out along the sugar-phosphate backbone of the double helix structure in a sequence that is energy-neutral, that is, not determined by energetic or chemical bonding requirements. Consequently, any sequence is possible, and the actual sequence serves as the letters of a genetic alphabet that the cellular machinery reads to fabricate the particular sequence of amino acid components to make specific proteins needed by the cell. The sequence is thus neither predetermined by chemical forces nor random, but carries information of great complexity that enables the cell to grow and function and replicate accurately. The same basic genetic alphabet is universal for all life forms on earth, whether animals like human beings, plants, bacteria, or viruses.

One of the most far-reaching revolutions in thinking in the contemporary sciences is to view the world in terms of information and its transformations. Loosely speaking, information concerns how the world is organized into complex, meaningful patterns instead of randomness. In the biological sciences, this view hinges around the realization that information is at the center of life. Whole new university departments and scientific journals are being set up in the new field of bioinformatics. One accomplishment of the human genome project is to lay out the details in our DNA like a vast encyclopedia of words. Geneticists talk of genes “expressing themselves” through the natural processes in our cells, depending both on the genome and epigenetic factors beyond the DNA sequence.

dna puzzle

In the view of contemporary biology, we are, in a sense more literal than figurative, embodied words. The words in the genome take flesh and make a living being. They become alive in a unique confluence of atoms, molecules, cells, and organs that make a coherent whole, a living person who can understand, speak, and love. The chemistry of carbon-bearing molecules makes this possible. In the case of the remarkable human animal, we find a being with the capacity to comprehend the whole universe that makes his being possible, who can comprehend the triple alpha process in ancient stars that enabled him to be here.

If we have the eyes to see, is it too much a stretch of the poetic imagination to think of each one of us, as it were, as being a unique utterance of God, a “word” spoken with an invitation to respond? Perhaps this helps us gain new insight on what it means for humankind to be created in the image and likeness of God. Perhaps the ancient Psalmist said more than he intended when he penned (Ps. 19:1-4a):

The heavens declare the glory of God;
the skies proclaim the work of his hands.
Day after day they pour forth speech;
night after night they reveal knowledge.
They have no speech, they use no words;
no sound is heard from them.
Yet their voice goes out into all the earth,
their words to the ends of the world. [NIV]

Word and fire: The fire in ancient stars has forged the material in which the words in the genome are written. We know this from science. This is possible because there is order in Reality, a Logos, a ground, that lies behind all that is and gives it coherence. The story of Jesus identifies the Logos and enables us to see that Reality is intelligible because the Word comes before the fire. This is not science, but represents wisdom beyond science to enable us to see why science is possible in the first place. Word begets words. It is really just as simple and deep as that.

About the author

paul julienne headshot

Paul Julienne

Paul S. Julienne recently retired from his career as a physicist at the National Institute of Standards and Technology and the Joint Quantum Institute of NIST and the University of Maryland. He has published over 200 scientific papers on the theory of quantum processes in atomic, molecular, and optical physics.