Genes, Cells, and the Changing Face of Technology, Part 2

| By (guest author) and (guest author)

BioLogos interim web editor Emily Ruppel recently traveled to Boston for the American Association for the Advancement of Science (AAAS) conference, where she took an afternoon off from lecture-going to catch up with Doug Lauffenburger, head of the biological engineering department at MIT and a member of the American Scientific Affiliation. Today we continue their conversation on how biological engineering is likely to influence the fields of technology and medicine in the 21st century.

DOUG LAUFFENBURGER: (Continuing from the first post in this series) Let’s say you have your genome sequenced when you’re eight years old, and let’s say you find out that you have this mutation that gives you a 20 percent more chance of having this or that disease. What do we do about that, and what are the downsides, say, with your future employer, if they know you’re at higher risk of a heart attack or something like that? If we can’t do anything about a basic risk, then all we’ve done is make your life worse, because now you’re worried about it, and if inappropriate people get that information,they could use it to your detriment with respect to comprising situations or limiting opportunities. So there is a risk that at least some of this kind of information can potentially do more harm than good.

This is where I disagree with some people, who may tell you, “Information is good. How can you be harmed by having more information? We just have to put the right mechanisms in place such that somehow no harm can come from having that information.”

I think that sort of thing is easy to say, but it’s hard to think of all the ways that you’re protected from any adverse effects of having this information. Some people happen to be very sanguine about it—they believe you’re never hurt by having more information.

Yet, even if you protect everything else, sequencing your genome can still affect the decisions you make in profound ways—and maybe some would say, “Well, now you can be more rational about how you live moving forward,” or something like that—but maybe not. Maybe you’re more fearful.

Of course, we can push this even further down the line—say, the fact that we can now do prenatal genome sequencing. Now, what do we do with that information?

For instance, many people argue that if you can know that a fetus has the Down Syndrome mutation, then it’s better off not being born. This is a reality even today—future parents are having to make that kind of decision, and many of them are deciding to terminate a pregnancy for which the outcome is a child with Down Syndrome. To many future parents out there, this is an excruciating thing to have to decide.

Obviously, there are a lot of problematic areas like that. Say, your fetus is not the gender you hoped for. Or, it has the gene mutation that will lead to cystic fibrosis.  How do you pass a law that says if you get information about a fetus’s genome, you can only act on it with respect to certain aspects of the information but not in other ways? This is a serious concern.

EMILY RUPPEL: So this kind of decision-making—decisions based on potentialities indicated in your genome—will be an issue that we deal with every day?

DL: Yes. Right now the main obstacle is cost. Today, if you wanted your genome sequenced, it would cost about ten thousand dollars. Now to a lot of people that’s not big deal—a lot of people can plunk down ten thousand dollars, and some are doing just that. This is along the lines of “concierge medicine:” for the wealthiest, it’s like, “Sure, I’ll decide to get all this information which is just not accessible to the larger part of the population.” That’s changing. There’s little question that by 2020 sequencing your whole genome will cost under a thousand dollars.

Also, by that point, we will have discovered more things, more genes, that are actionable, so the ratio of benefit to risk will be improved, at least. This is the second current issue with human genome sequencing, understanding the meaning of the information gained.

ER: What’s the one thing you wish the average person understood about bioengineering?

DL: As we talked about, there are more and more things now that are becoming theoretically imaginable in terms of what we can do with biology. The biggest problem is the uncertainty about what’s actually going to happen when we try it. That’s the big difference between biology and physics and chemistry—right now, we can predict very little about interventions in biological systems.

Even though you can think in principle about a lot of things—I can put these genes into a bacteria that will help turn nitrogen into ammonium—well, alright, how predictably designable is that? Is it like creating a computer, a spacecraft, an aircraft, an automobile? No. We’re not at the point yet where we can write down the equations that say, “Yes, if you do X, Y will happen with 90, 95 percent certainty.” Biology today has very, very low predictive capability. On the one hand, these things are in principle imaginable, and all sorts of amazing things can be done, but right now, the biggest chance is that if you tried it, what you wanted to do with it wouldn’t actually happen.

The question is, when will that change? When will biological intervention, biological design be more predictable? The time scale of that depends on the system in question. For bacteria, it’s on the order of a decade, because we really can get pretty close to understanding all the parts of bacteria. Human organisms—certainly not ten years, but maybe fifty—it’ll be after I’m gone from this world, but for people of the next generation, these things will be much more predictably designable. This goal, in fact, is the central mission of our MIT Biological Engineering Department—to make interventions in, and manipulations of, biological systems more predictable so that they can become reliable technologies.

I guess another thing I would emphasize is that this will be a lot like some other things we humans have developed—fire, gunpowder, nuclear power—it seems the amount of harm you can do is just about proportional to the amount of good you can do. The more powerful something is, the more good you can do with it, and probably the more harm you can do with it, too. Biology is on that scale. You put any of these things—stem cell intervention, genome sequencing, bacterial genome synthesis—on a scale, well, if there’s massive potential good, there’s also massive potential harm; and if there’s minimal harm, then there’s also probably only minimal potential good. The scale is, I think, proportional like that. And the worries there are pretty profound.

ER: What kinds of questions should we be asking about the future of genomic medicine?

DL: I think the key question to ask is, “What would, or could, we do with the information if we got it?” You have to know what you could do first, and only then can you decide what you would do. So yes, I would ask, “Ok, if I get this information, what could actually be done with it?” And right now, the answer is probably: not so much. This is related to what we were just speaking about—what it will take to gain better prediction about the operation of biological systems, including human patients, from information we can measure. How do we go from genome sequence to actual pathophysiology? This will require bioengineering methods to gain information at more mechanistic levels of biology, such as the operation of proteins in cells and tissues, and turn them into computational models. Only then can the greater promise of genomic medicine be attained.

ER: In terms of your purpose as a Christian, do you feel like God has guided you to where you are? Does God watch over this kind of work, and is God responsible for some of the “eureka” moments you have had?

DL: My main conviction about my purpose is being in a situation where I interact with students on a day to day basis, and I can encourage them when they are trying to figure out not just their science but how to go about doing it, how to interact with people, what are their priorities, struggles, etc. I can actually be there as an ambassador for Christ.

I am merely a Christian living in a very interesting situation—you know, we’re trying to learn more about God’s world—there’s nothing more noble about that than any other persons’ tasks, it simply happens to be what we’re doing day in, day out. But then how do you live and how do you think about your life? Being a Christian in the midst of this setting—that’s what I think I’m here for. In a lot of ways, the actual science that we do is more the means to an end, and what’s really important to me is living out Christ in this set of people.

Now, having said that, it’s not as if the science itself is irrelevant. It’s a means to an end, but it’s not irrelevant. I do think that God creates us with talents and passions, and that’s my number one advice to all my students that I interact with when they come up to me and say, “Well what should I do—people tell me that focusing my career on this one technology is more important, or that this other one is going nowhere, or that I can get a job here…”

I say exactly this. “You are created with talents and passions—so follow those things. Don’t let anybody else tell you what to be interested in or good at.” In my particular case, my talents ran mostly to mathematical analysis and quantitative thinking, but my passions were learning about biology works, how cells work… Well, 30 years ago, that didn’t make much sense. People weren’t interested in joining the two—yet now, it’s become very popular and important. I’m only in this place because those were the talents and interests God gave me.

As for any particular insight, or result—you know, I hate to single any particular moment or discovery out—I just think God gives us our minds and the people we work with, so whatever ideas came out of those relationships, well, in the end, they’re all God’s “ideas,” hints toward understanding His creation. It doesn’t matter what I did along the way, it’s all from God. 




Ruppel, Emily. "Genes, Cells, and the Changing Face of Technology, Part 2" N.p., 12 Mar. 2013. Web. 30 May 2017.


Ruppel, E. (2013, March 12). Genes, Cells, and the Changing Face of Technology, Part 2
Retrieved May 30, 2017, from

About the Authors

Doug Lauffenburger

  Doug Lauffenburger is the Ford Professor of Biological Engineering, Chemical Engineering, and Biology and Head of the Department of Biological Engineering at MIT. His research group at the school focuses on molecular cell bioengineering. He is also a member of the American Scientific Affiliation. His church home is the First United Presbyterian Church of Cambridge MA.

More posts by Doug Lauffenburger

Emily Ruppel

Emily Ruppel Emily Ruppel is a doctoral student in rhetoric of science at the University of Pittsburgh. Prior to her PhD work, she studied poetry at Bellarmine University in Louisville and science writing at MIT. She has also served as blog editor for The BioLogos Foundation and as Associate Director of Communications for the American Scientific Affiliation.

More posts by Emily Ruppel