Concerns About the Implications of BioLogos’ Science, Pt 6

| By (guest author)

This is part six in a series taken from Louis' paper (downloadable here), which addresses common Christian misconceptions about the nature of science and its relationship to God's involvement in our world. Links to the first five parts are located on the side bar to the right.

Concerns About the Implications of BioLogos’ Science, Pt 6

Science, Scientists and the Church

[Science is a Tapestry]. An enormous multiplicity of strands of evidence, many of them weak and ambiguous, can make a coherent logical bond whose strength is enormous.

—David Mermin”, “What's Wrong with this Sustaining Myth?” Physics Today 49, 11 (1996)

When you are a Bear of Very Little Brain, and you Think of Things, you find sometimes that a Thing which seemed very Thingish inside you is quite different when it gets out into the open and has other people looking at it.

—A. A. Milne, The House at Pooh Corner (Methuen & Co. Ltd. 1928)

When I was a child growing up in central Africa, I didn’t come across too many PhDs. I assumed that someone with Dr. in front of their name would surely know nearly all there is to know about their subject and a great deal more about the rest of the world of academic thought. I’ve now got one myself and supervised and examined a good number of PhD theses in both physics and chemistry. It has certainly disabused me of the idea that I or for that matter most people with PhDs know a great deal about anything beyond the very narrow confines of our (sub)specialties.

How does the scientific enterprise progress then? For that I turn to one of my favorite science writers, the physicist David Mermin, who used the metaphor of science as a tapestry made up of many threads. In a previous essay I wrote that rather than being an individual endeavor:

Creating scientific tapestries is a collective endeavor building on mutual trust and the communal experience of what kinds of arguments and evidence are likely to stand the test of time. In part because the skill of weaving reliable scientific tapestries relies on subtle judgments, a young scientist may work for years as an apprentice of older and more experienced practitioners before branching out on his own. In this process there are many parallels with the guilds of old. I am fond of this metaphor because it describes what I think I experience from the inside as a scientist. Moreover, it also emphasizes the importance of coherence and consistency when I weave together arguments and data to make an “inference to a best explanation”.

Peter Harrison has advanced an intriguing argument that modern experimental science has its roots in the Protestant Reformation:

An implication of Calvinist theological anthropology, I believe, was that we have to augment our natural faculties with instruments like telescopes and microscopes, and manipulate the natural world experimentally because it’s inherently deceitful. We need to do all these things to guard against the easy assumption that our faculties give us a reliable account of the natural world.1

This recognition of the noetic effects of sin also underlies the development of collective processes of error correction in modern science: “Sometimes...a Thing which seemed very Thingish inside you is quite different when it gets out into the open and has other people looking at it.

One consequence of this collective method of knowledge generation is that it can be difficult for an outsider to assess the strengths and weaknesses of an argument in a specific field. Moreover, the way one weaves tapestries can vary from field to field. Although the reasons for these differences are often unwritten (leading to frustration in interdisciplinary work) they don’t arise so much from cultural or sociological factors (although these do play a role) but rather are mainly determined by the kinds of questions that one is trying to address.

For example, some scientific concepts are built on a small number of observations that make very strong individual threads in a tapestry argument. Others are built on a much larger number of observations that may each be much weaker, but when woven together, “make a coherent logical bond whose strength is enormous."

A good example of the latter would be the arguments that geologists employ for an earth that is about 4.5 billions of years old. Although one might pick at many of the individual threads (as young earth advocates are apt to do), it is the sheer number of strands combined with the intricate structure of the whole interconnected tapestry that leads to the overwhelming scientific consensus on this issue. The full rationale for such assessments is sometimes hard for scientists to clearly communicate, and, by the same token, hard for laypeople to properly evaluate.

On the other hand, Christian laypeople should not take all of the confident pronouncements that emanate from our citadels of learning without a grain of salt. Sometimes the phrase “it has been scientifically proven” is shorthand for “shut up and believe me."

So a big question for the church is: who can you trust to assess the implications of new scientific discoveries? The answer is certainly not individuals, no matter how gifted. The process of discernment must draw on communities of collective expertise. As Mark Noll and others have pointed out, this is unfortunately not an area where the evangelical church has invested sufficient time or resources.

One place the church could look is to the many Christian academics who do research in the natural sciences. There are many more of these around than laypeople may realize. Here in Oxford I can count at least 10 professors of physics who are active in their local churches. However, there are several barriers to overcome. Firstly, the insane busyness of the academic profession, with its multiple conflicting demands of administration, teaching and research, makes it very hard for Christian academics to be responsible parents/husbands/wives, good church citizens, and also find the time to engage significantly with the wider Christian public. Secondly, the profession as a whole still looks down its nose at popularisers, and Christian academics are not immune to this. Thirdly, for a multitude of reasons (issues related to the “Scandal of the Evangelical Mind”, pride, isolation, etc.) many Christian academics have had difficult experiences when engaging on intellectual issues with the church and vice versa. Some diplomacy may be needed before they are willing to re-engage (someone should write an essay on common pastoral issues that academics face for BioLogos).


In conclusion then, I think the barriers to the church properly discerning the strengths and weaknesses of the BioLogos model do not lie primarily in the content of its science or even in the worry that this approach may lead to deism. These are challenges to be sure. Evangelicals’ concerns about deism, for example, often have their primary origin in a sub-Biblical understanding of how God sustains the world and a rationalistic approach to natural theology that has been strongly influenced by the Enlightenment. Both these unexamined notions are shared by the general public. To make progress here, it is important for the BioLogos team to sensitively confront the ways we in the church have all been shaped by the spirit of the age. That means listening as well as talking. Moreover, those of us who work in the sciences need to learn how to better communicate the essence of our professional work to the rest of the body of Christ. Among other things, that means a careful assessment of the metaphors we inevitably need to use.

But these are not insurmountable challenges. A much more formidable barrier revolves around the issue of trust. How can the church discern the truth on such complex issues? How can it respond to the Newtons and Leibnizes of today? Where are the trusted communities of specialists to help it negotiate the tapestries of scientific arguments, while simultaneously carefully engaging with the philosophical and theological questions this may raise? Perhaps BioLogos can become part of that crucial “missing link”. But to do that it must be deeply embedded in the wider body, picking its battles carefully and strategically, and building alliances wherever possible. For this, as in everything, we need the guidance of the Holy Spirit: “Unless the Lord builds the house, the laborers labor in vain” (Psalm 127:1).




Louis, Ard. "Concerns About the Implications of BioLogos’ Science, Pt 6" N.p., 25 Feb. 2011. Web. 26 May 2017.


Louis, A. (2011, February 25). Concerns About the Implications of BioLogos’ Science, Pt 6
Retrieved May 26, 2017, from

References & Credits

1. See also P. Harrison, The Fall of Man and the Foundations of Science, CUP (2007).

About the Author

Ard Louis

Ard Louis is a Professor of Theoretical Physics at the University of Oxford, where he leads a interdisciplinary research group studying problems on the border between chemistry, physics and biology, and is also director of graduate studies in theoretical physics. From 2002 to 2010 he was a Royal Society University Research Fellow at the University of Cambridge and the University of Oxford. He is also an associate of the Faraday Institute for Science and Religion. He has written for the BioLogos Foundation, where as of November 2011, he sat on the Board of Directors. He engages in molecular gastronomy. Prior to his post at Oxford he taught Theoretical Chemistry at Cambridge University where he was also director of studies in Natural Sciences at Hughes Hall. He was born in the Netherlands, was raised in Gabon and received his first degree from the University of Utrecht and his Ph.D. in theoretical physics from Cornell University.

More posts by Ard Louis